793 research outputs found

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Amyloid-β Triggers the Release of Neuronal Hexokinase 1 from Mitochondria

    Get PDF
    Brain accumulation of the amyloid-β peptide (Aβ) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aβ-induced oxidative stress and HK activity. We found that Aβ triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aβ oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aβ-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aβ-induced oxidative stress and neuronal death. Results suggest that Aβ-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD

    The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue

    Get PDF
    Adipose tissue is an important organ that produces and secretes hormones and cytokines, including TGF-β1, PDGF-AA, and VEGF-A. The goal of the present study was to investigate the influence of a single session of acute exercise, as well as the prolonged endurance training on the production of TGF-β1, PDGF-AA, and VEGF-A in the subcutaneous white adipose tissue in rats. Rats were randomly divided into two groups: untrained (UT, n = 30) and trained rats (T, subjected to 6-week endurance training with increasing load, n = 29). Both groups were subjected to an acute exercise session with the same work load. The rats were killed before (UTpre, Tpre), immediately after (UT0h, T0h), or 3 h (UT3h, T3h) after exercise and adipose tissue samples collected. Growth factor mRNA was evaluated using RT-PCR; the protein levels were measured before and after training (UTpre and Tpre) using the immunoenzymatic method. TGF-β1 and PDGF-AA mRNA levels were decreased in the UT3h rats compared to the UTpre rats (P = 0.0001 and P = 0.03, respectively), but the VEGF-A mRNA level remained unchanged in the UT0h and UT3h rats compared to UTpre rats. TGF-β1, PDGF-AA and VEGF-A mRNA levels were decreased in the T3h rats compared to Tpre (P = 0.0002, P = 0.02, and P = 0.03, respectively). TGF-β1, PDGF-AA and VEGF-A mRNA levels significantly increased in the Tpre rats compared to UTpre (all P = 0.0002). However, the protein levels remained constant. In conclusion, prolonged physical exercise increases growth factor mRNA in adipose tissue but not protein levels

    Severely Impaired Learning and Altered Neuronal Morphology in Mice Lacking NMDA Receptors in Medium Spiny Neurons

    Get PDF
    The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa

    Cross Section Measurements of High-pTp_T Dilepton Final-State Processes Using a Global Fitting Method

    Get PDF
    We present a new method for studying high-pTp_T dilepton events (e±ee^{\pm}e^{\mp}, μ±μ\mu^{\pm}\mu^{\mp}, e±μe^{\pm}\mu^{\mp}) and simultaneously extracting the production cross sections of ppˉttˉp\bar{p} \to t\bar{t}, ppˉW+Wp\bar{p} \to W^+W^-, and p\bar{p} \to \ztt at a center-of-mass energy of s=1.96\sqrt{s} = 1.96 TeV. We perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. Our results, which use 360pb1360 {\rm pb^{-1}} of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are σ(ttˉ)=8.52.2+2.7\sigma(t\bar{t}) = 8.5_{-2.2}^{+2.7} pb, σ(W+W)=16.34.4+5.2\sigma(W^+W^-) = 16.3^{+5.2}_{-4.4} pb, and \sigma(\ztt) =291^{+50}_{-46} pb.Comment: 20 pages, 2 figures, to be submitted to PRD-R

    Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)

    Get PDF
    Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23 (syst) improving the statistical uncertainty by more than a factor of two. We find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs -> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure

    Top Quark Mass Measurement from Dilepton Events at CDF II with the Matrix-Element Method

    Get PDF
    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from ppˉp\bar{p} collisions with s=1.96\sqrt s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing qqˉttˉbνbˉνq\bar{q} \to t\bar{t} \to b\ell\nu_{\ell}\bar{b}\ell'\nu_{\ell'} with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb1^{-1}, we observe 33 candidate events and measure Mtop=165.2±6.1(stat.)±3.4(syst.) GeV/c2.M_{top} = 165.2 \pm 6.1(\textrm{stat.}) \pm 3.4(\textrm{syst.}) \mathrm{~GeV}/c^2. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.Comment: 21 pages, 14 figure
    corecore